Software Assurance Tips

A product of the Software Assurance Tips Team[2]

Chris Ramsey

Monday 7™ July, 2025



1 The -Wall GCC Flag and CWE-457: Why -Wall Does Not Offer
Sufficient Protection Against Uninitialized Variables

Updated Monday 14t July, 2025

1.1 Introduction

CWE-457 is a category of software weakness related to the use of uninitialized variables.[1] In some
programming languages—C and C++ in particular—local (stack) variables are not automatically ini-
tialized. Instead, they contain garbage data, consisting of leftover values from previous operations.
Using uninitialized variables can easily lead to unpredictable behavior and security vulnerabilities.

The -Wall command-line argument in the GNU Compiler Collection (GCC) enables a wide range
of useful warnings, including some that help detect the use of uninitialized variables. For example,
consider the program in Listing[I} When compiled with the GCC arguments -Wall and -Wexrrox, the
uninitialized value is properly detected as shown in Listing[2]

#include <cstdio>

int main() {
int x;
int y = x + 1; // 'x' is used uninitialized
printf (*%d\n”, y);
return O0;

Listing 1: Simple Uninitialized Variable

main.cpp: In function ‘int main’():
main.cpp:5:9: error: °x is used uninitialized [OWerror=uninitialized]
5 | int y =x + 1; // 'x' is used uninitialized
| A
main.cpp:4:9: note: °x was declared here
4 | int Xx;
A
cclplus: all warnings being treated as errors

Listing 2: Compilation with -Wall and -Werror

This has led to a common misconception: that the -Wall flag offers developers sufficient pro-
tection against CWE-457. However, this is not the case. In this SwA tip, we explore some common
situations where -Wall fails to detect the use of uninitialized variables.

Example 1: Conditional Assignment

Consider the example in Listing[3] Compiling this program with GCC version (Ubuntu 13.3.0-6ubuntu? 24.04)
13.3.0 using the -Wall command-line argument produces no warnings. However, running the pro-

gram a few times is usually sufficient to demonstrate the issue. Sometimes, it does not output 10

(see Listing[4).

#include <stdio.h>
#include <stdlib .h>
#include <time.h>

int main() {
int x;
srand (time (NULL) ) ;



Listing 3: Conditionally Uninitialized Variable

Listing 4: Execution Showing Uninitialized Variable

Example 2: Function Scope Escape

Consider the example in Listing[5] Using the same compiler as Example 1, GCC does not detect that
variable x remains uninitialized after the call to foo. Passing a pointer to the variable is enough to
fool the compiler.

Listing 5: Function Scope Escape Uninitialized Variable

Example 3: Uninitialized Class Member

Consider the example in Listing[6] The private member variable m_x is used uninitialized without
any warning from the same GCC version as the previous examples.




return O0;

Listing 6: Class Member Uninitialized

Conclusion

While the -Wall flag does provide some protection by detecting simple instances of CWE-457, many
common cases remain undetected. The SwA team generally recommends developers follow industry
best practices—such as always initializing variables—and use static analysis tools whenever practi-
cal to help detect this issue.



References

[1] CWE Content Team. “CWE-457: Use of Uninitialized Variable”. In: (2025). URL: https://cwe.
mitre.orq/data/definitions/457.html.

[2] Jon Hood, ed. SWATips. https://www.SwATips.com/.


https://cwe.mitre.org/data/definitions/457.html
https://cwe.mitre.org/data/definitions/457.html
https://www.SwATips.com/

	The -Wall GCC Flag and CWE-457: Why -Wall Does Not Offer Sufficient Protection Against Uninitialized Variables
	Introduction


