
Software Assurance Tips
A product of the Software Assurance Tips Team[2]

Chris Ramsey

Monday 7th July, 2025

1

1 The -Wall GCC Flag and CWE-457: Why -Wall Does Not Offer

Sufficient Protection Against Uninitialized Variables

Updated Monday 14th July, 2025

1.1 Introduction

CWE-457 is a category of software weakness related to the use of uninitialized variables.[1] In some
programming languages—C and C++ in particular—local (stack) variables are not automatically ini-
tialized. Instead, they contain garbage data, consisting of leftover values from previous operations.
Using uninitialized variables can easily lead to unpredictable behavior and security vulnerabilities.

The -Wall command-line argument in the GNU Compiler Collection (GCC) enables a wide range
of useful warnings, including some that help detect the use of uninitialized variables. For example,
consider the program in Listing 1. When compiled with the GCC arguments -Wall and -Werror, the
uninitialized value is properly detected as shown in Listing 2.

#include <cstdio >

int main () {
int x ;
int y = x + 1; / / ' x ' i s used un in i t i a l i z ed
printf (”%d \n” , y) ;
return 0;

}

Listing 1: Simple Uninitialized Variable

main . cpp : In function ‘ int main’ () :
main . cpp : 5 : 9 : error : ‘’x i s used unini t ia l ized [�Werror=unini t ia l ized]

5 | int y = x + 1; / / ' x ' i s used unini t ia l ized
| ^

main . cpp : 4 : 9 : note : ‘’x was declared here
4 | int x ;

| ^
cc1plus : a l l warnings being treated as errors

Listing 2: Compilation with -Wall and -Werror

This has led to a common misconception: that the -Wall flag offers developers sufficient pro-
tection against CWE-457. However, this is not the case. In this SwA tip, we explore some common
situations where -Wall fails to detect the use of uninitialized variables.

Example 1: Conditional Assignment

Consider the example inListing 3. Compiling this programwithGCCversion (Ubuntu 13.3.0-6ubuntu2 24.04)
13.3.0 using the -Wall command-line argument produces no warnings. However, running the pro-
gram a few times is usually sufficient to demonstrate the issue. Sometimes, it does not output 10
(see Listing 4).

#include <stdio . h>
#include <s td l ib . h>
#include <time . h>

int main () {
int x ;
srand (time (NULL)) ;

2

i f (rand () % 2 == 0) { / / 50% chance of being true
x = 10;

}
printf (”%d \n” , x) ;
return 0;

}

Listing 3: Conditionally Uninitialized Variable

. / main . exe
10
. / main . exe
10
. / main . exe
32765

Listing 4: Execution Showing Uninitialized Variable

Example 2: Function Scope Escape

Consider the example in Listing 5. Using the same compiler as Example 1, GCC does not detect that
variable x remains uninitialized after the call to foo. Passing a pointer to the variable is enough to
fool the compiler.

#include <cstdio >

void foo (int* x) {
/ / does nothing

}

int main () {
int x ;
foo(&x) ;
printf (”%d \n” , x) ;
return 0;

}

Listing 5: Function Scope Escape Uninitialized Variable

Example 3: Uninitialized Class Member

Consider the example in Listing 6. The private member variable m_x is used uninitialized without
any warning from the same GCC version as the previous examples.

#include <cstdio >

class MyClass {
int m_x;

public :
void print () {

printf (”%d \n” , m_x) ;
}

} ;

int main () {
MyClass obj ;
obj . print () ;

3

return 0;
}

Listing 6: Class Member Uninitialized

Conclusion

While the -Wall flag does provide some protection by detecting simple instances of CWE-457, many
commoncases remainundetected. The SwA teamgenerally recommends developers follow industry
best practices—such as always initializing variables—and use static analysis tools whenever practi-
cal to help detect this issue.

4

References

[1] CWE Content Team. “CWE-457: Use of Uninitialized Variable”. In: (2025). url: https://cwe.
mitre.org/data/definitions/457.html.

[2] Jon Hood, ed. SwATips. https://www.SwATips.com/.

5

https://cwe.mitre.org/data/definitions/457.html
https://cwe.mitre.org/data/definitions/457.html
https://www.SwATips.com/

	The -Wall GCC Flag and CWE-457: Why -Wall Does Not Offer Sufficient Protection Against Uninitialized Variables
	Introduction

