
Software Assurance Tips
A product of the Software Assurance Tips Team[3]

Jon Hood

Monday 12th May, 2025

1

1 Leaking Through the Cracks: Rust’s Soft Memory Shell

Updated Monday 12th May, 2025

Last year, Cybersecurity leadership in the U.S. encouraged organizations to usememory-safe pro-
gramming languages. I criticized the blanket recommendation[2] as a partial solution for amore se-
rious underlying concern in developer training, citing the problems faced with legacy Ada code[1].
Recently, I have had the privilege of sitting through lengthymeetings extoling the virtues ofmemory-
safe languages and creating policies that enumerate the languages that developers must use for cer-
tain contracts. In spite of all the warnings, it looks like certain government agencies are pushing
ahead with the recommendation.

But is requiring a memory-safe language the panacea to memory safety? Certainly not! Heap in-
spections, logical errors caused by algorithmcomplexity, andmemory leaks are not areas ofmemory
safety guaranteed by Rust. After appreciated and constructive criticism from my last article focus-
ing on Ada, I have been politely asked to demonstrate memory concerns that should be considered
in Rust.

Rust Background

In “safe” code (and most of the development in Rust is safe by default unless you use the unsafe
keyword), many of the memory safety concerns have very strong mitigations. At compile time, the
Rust borrow checker will prevent most dangling pointers, use-after-free errors, memory-related
TOCTOU and data race issues, invalid memory accesses, and more. At runtime, additional checks
will panic in ways that can be handled appropriately.

What doesn’t get caught, however, are the profundity of memory issues related to data confi-
dentiality (heap inspections), integrity (logical errors due to algorithm complexity), and availability
(memory leaks and DoS attacks) that plague safety-critical systems today.

A Demonstration of Memory Leaks

Consider the situation of a linked list where one node references an earlier node. This thought
experiment using two nodes is demonstrated in Listing 1. In this code, a linked list results in a
circular reference. In Rust, the memory is always referenced by itself, resulting in it never getting
freed when it goes out of scope.

use std : : rc : :Rc ;
use std : : c e l l : : RefCell ;
use std : : thread ;
use std : : time : : Duration ;

#[derive (Debug)]
struct Node {

value : i32 ,
next : RefCell<Option<Rc<Node>>>,

}

fn create_and_leak (n : i32) {
let a = Rc : : new(Node { value : n + 1 , next : RefCell : : new(None) }) ;
let b = Rc : : new(Node { value : n + 2 , next : RefCell : : new(None) }) ;

a . next . borrow_mut () . replace (Rc : : clone(&b)) ;
b . next . borrow_mut () . replace (Rc : : clone(&a)) ;

println! (”Leaky cycle { } . ” , a . value) ;
println! (”Reference counts : a = { } , b = { } . ” , Rc : : strong_count(&a) , Rc : : strong_count(&b)) ;
println! (”Values : a = { } , b = { } . ” , a . value , b . value) ;

2

/ / ' a ' and 'b ' go out of scope but are not deallocated .
}

fn main () {
println! (” Start ing the main loop . . . ”) ;
for i in 0 . . 2 {

create_and_leak (i) ;
thread : : sleep (Duration : : from_secs (1)) ;

}
}

Listing 1: leaky.rs: Intentional Memory Leak

The code can be compiled, executed, and run through the tool heaptrack on the command line
as shown in Listing 2.

$ rustc leaky . rs
$ heaptrack . / leaky
heaptrack output wil l be written to ” . / heaptrack . leaky .10245. zs t ”
s tart ing application , th is might take some time . . .
Start ing the main loop . . .
Leaky cycle 1 .
Reference counts : a = 2 , b = 2 .
Values : a = 1 , b = 2 .
NOTE: heaptrack detected DEBUGINFOD_URLS but wil l disable i t to prevent
unintended network delays during recording
I f you real ly want to use DEBUGINFOD, export HEAPTRACK_ENABLE_DEBUGINFOD=1
Leaky cycle 2 .
Reference counts : a = 2 , b = 2 .
Values : a = 2 , b = 3 .
heaptrack s ta t s :

a l locat ions : 19
leaked al locat ions : 4
temporary al locat ions : 1

Heaptrack finished ! Now run the following to invest igate the data :

heaptrack ��analyze ” . / heaptrack . leaky .10245. zs t ”
$ heaptrack_print heaptrack . leaky .10245. zs t | grep ”^ to ta l memory”
to ta l memory leaked : 160B

Listing 2: Heaptrack

Conclusion

In the mid-2000s, Gentoo Linux was at the height of its popularity. It had an active community
and extremely friendly documentation. The bugfixes, performance improvements, and security en-
hancements it brought to the Linux community are a shining beacon of what new technologies can
do for the overall community. In like manner, Rust and other memory-safe languages are usher-
ing in a new age of security-conscious development. Proposals for memory-safe C++, safety-critical
Rust technologies like Ferrocene, and even experimental borrow checkers in other languages have
exploded onto the scene. The benefits of Rust cannot be overstated, and the second-order effects of
the Rust community on other programming languages will have good andmeaningful cybersecurity
enhancements for developers whomay never have a desire to learn it. The programming landscape
is changing. Just as Chrome OS wouldn’t exist as it does today without Gentoo Linux, the same can
be said about many of the upcoming C++26 proposals inspired by Rust programming paradigms.

I cannot say enough good things about Rust, Ada, and other memory-safe programming lan-
guages; however, that praise should be tempered with the realization that these languages are not
the silver bullet of memory safety to mandate at an organizational level. Doing so will cause lead-
ership to develop a false sense of security that will be dangerous in the long run.

3

References

[1] JonHood. “AdaUncheckedConversions”. In: SwATips.com (2023). url:https://www.swatips.
com/articles/20230410.html.

[2] Jon Hood. “Back to the Building Blocks: Codifying Complacency”. In: SwATips.com (2024). url:
https://www.swatips.com/articles/20240902.html.

[3] Jon Hood, ed. SwATips. https://www.SwATips.com/.

4

https://www.swatips.com/articles/20230410.html
https://www.swatips.com/articles/20230410.html
https://www.swatips.com/articles/20240902.html
https://www.SwATips.com/

	Leaking Through the Cracks: Rust's Soft Memory Shell

