
Software Assurance Tips
A product of the Software Assurance Tips Team[5]

Jon Hood

Monday 18th September, 2023

1



1 A History of Verification, Validation, and Code Scanning

Updated Monday 18th September, 2023

One of the DoD and NASA trends we have seen lately is the confusion of functional VV&A with
cybersecurity tasks. The blurring of these two distinct efforts from organizations implementing an
IV&V program and a cybersecurity program can cause collisionswith the definitions ofwhat is being
accomplished.

Static code analysis is one of those definitions. The meaning of static code analysis is very differ-
ent from a Functional, VV&A IV&V programwhen compared to the static code analysis conducted by
a cybersecurity program. The etymology of static analysis comes from completely diverging goals.

1.1 Verification and Validation

“Haste makes waste.” In the 1960s and 1970s, a static code walkthrough was recommended before
ever compiling the module. “The verification sessions should occur before the first compilation of
the module.” Since “few if any compilers are capable of detecting every syntax error,” syntax errors
were considered logic errors in the software.[8, pp. 144, 149, 292] The static analysis and formal
walkthrough of code from a V&V perspective has the goal of verifying the integrity of the logic that
goes into the design of the software module.

This ties into the current DoDVV&A process for Verification, Validation, and Accreditation in DoD
Instruction 5000.61. These are defined as:[2]

• Verification—The process of determining that a model or simulation implementation and its
associated data accurately represent the developer’s conceptual description and specifications.

• Validation—The process of determining the degree to which a model or simulation and its as-
sociated data are an accurate representation of the real world from the perspective of the in-
tended uses of the model.

• Accreditation—The official certification that a model or simulation and its associated data are
acceptable for use for a specific purpose.

One way to accomplish these goals is by implementing IEEE 1012, the IEEE Standard for System,
Software, and Hardware Verification and Validation. This lays out the purpose of V&V: “to help the
organization build quality into the system during the life cycle. V&V processes provide an objec-
tive assessment of products and processes throughout the life cycle. This assessment demonstrates
whether requirements are correct, complete, accurate, consistent, and testable.” This standard rec-
ommends a process for inspecting source code to “verify that the source code implementation is
traceable to the design” and a static walkthrough of the code for the same types of logic issuesMyers
mentions in his book.[6, pp. 10, 213, 216] Cybersecurity static code analysis scans are circumstantial
evidence used to demonstrate the testability of the codebase.[6, p. 206]

If you want to certify that a simulation or software model correctly reflects the real-world sce-
nario and requirements that define the software module, VV&A is the way to go. Static code walk-
throughs are often employed as a tool to accomplish this task.

Static analysis tools for proving the logic of code include flow provability tools such as GNAT-
prove, property checkers[4] such as RapidCheck and QuickCheck[7], SlithIR SSA, Prusti, and many
more static analysis tools.

1.2 Cybersecurity

Static analysis is defined in the cybersecurity realm by DoDI 8500.01 as part of the Risk Manage-
ment Framework which implements NIST 800-53.[3] Static analysis and the tools which conduct it
are defined in controls RA-5, SA-11, and SA-11(1). “Static code analysis provides a technology and
methodology for security reviews and includes checking forweaknesses in the code aswell as for the
incorporation of libraries or other included code with known vulnerabilities or that are out-of-date

2



and not supported. Static code analysis can be used to identify vulnerabilities and enforce secure
coding practices.”[10, p. 277]

Cybersecurity static analysis usuallymaps issues against CommonWeakness Enumerations (CWEs),
Common Vulnerabilities and Exposures (CVEs), and software assurance defects. A good framework
for defining these secure code security analysis tools is NIST 500-268 which defines functional re-
quirements of cybersecurity static analysis tools. Buffer overflows (such as stack and heap over-
flows, CWEs 121 and 122), uninitialized variables (CWE-457), TOCTOU (CWE-367), and injections
(such as command, SQL, and LDAP injections, CWEs 78, 89, and 90) are examples of cybersecurity
concerns.[9]

Tools that conduct these checks include Fortify, Checkmarx, and many more. The performance
of these scans is implemented as part of the Application Security and Development STIG[1] which
provides even more guidance on how to establish coding standards (SV-222653r879887_rule), inde-
pendent testing (SV-222627r879887_rule), and even specifies someminimumrequirements for static
code analysis such as race conditions (SV-222567r879887_rule), storing sensitive information in hid-
den fields (SV-222601r879812_rule), cross-site scripting (XSS) (SV-222602r879652_rule), cross-site re-
quest forgeries (CSRF) (SV-222603r879652_rule), command injections (SV-222604r879652_rule), canon-
ical representation vulnerabilities (SV-222605r879652_rule), input validation/handling (SV-222606r879652_rule/SV-
222609r879818_rule), SQL injections (SV-222607r879652_rule), XML-based attacks (SV-222608r879652_rule),
and overflows (including buffer overflow, heap overflows, stack overflows, andwrap-around issues)
(SV-222612r879821_rule).

1.3 Conclusion

Wehave seen an increase in VV&A organizations claiming that they’re conducting the static analysis
defined by VV&A processes yet instead conduct cybersecurity static analyses. A good program will
incorporate the DoDI 5000.61 requirements, and static analysis tools that speak the language of logic,
proofs, and contracts is one small portion of the capabilities such organizations should implement.
If your program needs accreditation or authorization from a cybersecurity perspective (such as an
Assess and Authorize under RMF), a cybersecurity program will employ static analysis tools that
speak the language of weaknesses, vulnerabilities, and coding standards.

Perform a litmus test on your own programs today. Is your VV&A program using cybersecurity
tools such as Cppcheck, Code Dx, Checkmarx, Fortify, or Coverity? Suppose your program has a
requirement to draw a circle. These are the tools that allow you to say, “Yeah, verily, this is the most
secure square that has ever been drawn on a screen.” But these tools do not allow you to say, “You
drew a square when the requirements contract for the code is that you draw a circle.” That involves
provability and qualification testing that your VV&A program should be concentrating on.

3



References

[1] Application Security and Development STIG V5R3. Tech. rep. July 2023. url: https://dl.
dod.cyber.mil/wp-content/uploads/stigs/zip/U_ASD_V5R3_STIG.zip.

[2] Department of Defense. Department of Defense Instruction 5000.61. Tech. rep. Incorporating
Change 1, October 15, 2018. Washington, D.C.: Department of Defense, 2018. url: https://
www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500061p.pdf.

[3] Department of Defense. Department of Defense Instruction 8500.01. Tech. rep. Incorporating
Change 1, October 7, 2019. Washington, D.C.: Department of Defense, 2019. url: https://
www.esd.whs.mil/portals/54/documents/dd/issuances/dodi/850001_2014.pdf.

[4] HarryDFoster. “Trends in functional verification: A 2014 industry study”. In: Proceedings of the 52nd Annual Design Automation Conference.
2015, pp. 1–6.

[5] Jon Hood, ed. SwATips. https://www.SwATips.com/.

[6] IEEE Standards Association. “IEEE Standard for System, Software, and Hardware Verification
andValidation”. In: IEEE Std 1012-2016 (Revision of IEEE Std 1012-2012/ Incorporates IEEE Std 1012-2016/Cor1-2017)
(2017), pp. 1–260. doi: 10.1109/IEEESTD.2017.8055462.

[7] Andrew Jones and Jeremy Sonander. “An Introduction To Property Checkers For Functional
Verification”. In: (2003). url: https://averant.com:8443/assets/pdf/Intro_PropVer.
pdf.

[8] Glenford J Myers. Software Reliability. John Wiley & Sons, Inc., 1976. isbn: 978-0-471-62765-4.

[9] National Institute of Standards andTechnology. Security and Privacy Controls for Information Systems and Organizations.
Tech. rep. Special Publication (SP) 500-268 v1.1. Washington, D.C.: U.S. Department of Com-
merce, 2011. doi: 10.6028/NIST.SP.500-268v1.1. url: https://nvlpubs.nist.gov/
nistpubs/Legacy/SP/nistspecialpublication500-268v1.1.pdf.

[10] National Institute of Standards andTechnology. Security and Privacy Controls for Information Systems and Organizations.
Tech. rep. Special Publication (SP) 800-53 Revision 5. Washington, D.C.: U.S. Department of
Commerce, 2020. doi: 10.6028/NIST.SP.800-53r5. url: https://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-53r5.pdf.

4

https://dl.dod.cyber.mil/wp-content/uploads/stigs/zip/U_ASD_V5R3_STIG.zip
https://dl.dod.cyber.mil/wp-content/uploads/stigs/zip/U_ASD_V5R3_STIG.zip
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500061p.pdf
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500061p.pdf
https://www.esd.whs.mil/portals/54/documents/dd/issuances/dodi/850001_2014.pdf
https://www.esd.whs.mil/portals/54/documents/dd/issuances/dodi/850001_2014.pdf
https://www.SwATips.com/
https://doi.org/10.1109/IEEESTD.2017.8055462
https://averant.com:8443/assets/pdf/Intro_PropVer.pdf
https://averant.com:8443/assets/pdf/Intro_PropVer.pdf
https://doi.org/10.6028/NIST.SP.500-268v1.1
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication500-268v1.1.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication500-268v1.1.pdf
https://doi.org/10.6028/NIST.SP.800-53r5
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5.pdf

	A History of Verification, Validation, and Code Scanning
	Verification and Validation
	Cybersecurity
	Conclusion


