
Software Assurance Tips
A product of the Software Assurance Tips Team[1]

Kevin Keen

Monday 3rd April, 2023

1

1 Coverity BAD_CAST

Updated Friday 12th May, 2023

Recently we came across a finding in a Coverity scan that was a bit puzzling at first. The finding
was labeled BAD_CAST. The supporting details didn’t help much either. It simply indicated a con-
version between incompatible types. There are probably several different reasons Coverity might
flag this issue. The line of code in question this time was attempting to start a new thread by calling
pthread_create. As is expected with pthread_create, they were attempting to pass a pointer to
a function that would be called as the thread started. That much is normal when using pthreads.
Listing 1 illustrates a fairly normal use of pthread_create using a non member function pointer
as the callback.

#include <pthread . h>
#include <iostream>

using namespace std ;

void* non_member_function (void* foo) {
cout << ” In non_member_function ! ” << endl ;

}

int main(int argc , char** argv) {
pthread_t thread ;

pthread_create(&thread , NULL, &non_member_function , NULL) ;

pthread_join (thread , NULL) ;

return 0;
}

Listing 1: Typical Use of a Function Poiter

Where things went wrong was that the pointer being passed was a reinterpret_cast of the
address of amember function. Listing 2 shows an example of attempting to pass amember function
pointer to pthread_create. Don’t do this!!!

#include <pthread . h>
#include <iostream>

using namespace std ;

c lass Example {
public :

void* member_function (void* foo) ;
} ;

void* Example : : member_function (void* foo) {
cout << ” In member_function ! ” << endl ;

}

int main(int argc , char** argv) {
pthread_t thread ;

pthread_create(&thread , NULL, reinterpret_cast <void* (*) (void*)>(&Example : : member_function , NULL) ;

pthread_join (thread , NULL) ;

return 0;

2

}

Listing 2: Improper Use of a Pointer to a Member Function

In C++, function pointers differ from pointers to member functions. A pointer to a member func-
tion might actually be represented by a data structure containing extra information, especially if it
were pointing at a virtual function.[2] In fact, there is so much difference between normal function
pointers and pointers to member functions that there is even special syntax for declaring a pointer
to a member function. Listing 3 shows an example of declaring and using a pointer to a member
function. Listing 4 shows another example, improved with the use of a typedef.

#include <iostream>

using namespace std ;

c lass Example {
public :

void* member_function (void* foo) ;
} ;

void* Example : : member_function (void* foo) {
cout << ” In member_function ! ” << endl ;

}

int main(int argc , char** argv) {
Example myExample ;

void* (Example : :*memFuncPtr) (void*) = &Example : : member_function ;
(myExample.*memFuncPtr) (NULL) ;

return 0;
}

Listing 3: Example of Declaring and Using a Pointer to a Member Function

#include <iostream>

using namespace std ;

c lass Example {
public :

void* member_function (void* foo) ;
} ;

void* Example : : member_function (void* foo) {
cout << ” In member_function ! ” << endl ;

}

int main(int argc , char** argv) {
Example myExample ;

typedef void* (Example : :*memFuncPtr) (void*) ;
memFuncPtr myPtr = &Example : : member_function ;
(myExample.*myPtr) (NULL) ;

return 0;
}

Listing 4: Use of Typedef with Pointer to Member Function to Improve Readability

A non-static member function can’t really exist on its own. It is part of a class and must exist
as part of that class. Trying to invoke it apart from the class being instantiated doesn’t make much

3

sense (unless the function is declared static[2]). Note that in the example code in Listings 3 and 4,
we had to use an object (myExample) in order to invoke the member function through the pointer.

Good compilers will give a warning if you try to cast a pointer to a member function into a reg-
ular function pointer, but will normally allow you to do so anyway. Even IF it happens to work as
expected when tested, doing this is strictly in the land of undefined behavior. It is not guaranteed to
work, not portable, and could break in the most spectacular fashion at any point in the future.

If you find yourself in this situation, take heart! There is a solution! Simply have a non-member
function as an intermediate step. That intermediate function can take a pointer or reference to the
desired object and call themembermethod. And because it is a non-member function itself, it is safe
to create a function pointer that can be passed to functions like pthread_create. Problem solved!

#include <pthread . h>
#include <iostream>

using namespace std ;

c lass Example {
public :

void* member_function (void* foo) ;
} ;

void* Example : : member_function (void* foo) {
cout << ” In member_function ! ” << endl ;

}

void* intermediate_func (void* objPtr) {
Example* examplePtr = (Example*) objPtr ;
examplePtr�>member_function (NULL) ;

}

int main(int argc , char** argv) {
Example myExample ;

pthread_t thread ;

pthread_create(&thread , NULL, &intermediate_func , myExample) ;

pthread_join (thread , NULL) ;

return 0;
}

Listing 5: Using an Intermediate Function

4

References

[1] Jon Hood, ed. SwATips. https://www.SwATips.com/.

[2] Standard C++ Foundation. “Pointers to Members”. In: (). url: https://isocpp.org/wiki/
faq/pointers-to-members.

5

https://www.SwATips.com/
https://isocpp.org/wiki/faq/pointers-to-members
https://isocpp.org/wiki/faq/pointers-to-members

	Coverity BAD_CAST

