
Software Assurance Tips
A product of the Software Assurance Tips Team[2]

Jon Hood

Monday 19th September, 2022

1



CNSA 1.0 CNSA 2.0
Elliptic Curve Digital Signature Algorithm
(ECDSA) using P-384
Rivest-Shamir-Adleman (RSA) using minimum
3072-bit modulus

Leighton-Micali Signature (LMS)
Xtended Merkle Signature Scheme (XMSS)

Table 1: Software and Firmware Signing Algorithms: CNSA 1.0 vs 2.0

1 Commercial National Security Algorithm (CNSA) Suite 2.0

Updated Friday 23rd September, 2022

As the government switches to quantum-resistant and post-quantum cryptographic algorithms,
the CNSA suite (formerly Suite-B algorithms) is undergoing some changes with a new release: ver-
sion 2.0. This release of the CNSA suite includes the following information:[3]

• a requirement to be compliant and support these algorithms by 2035

• a requirement to use NIST 800-208 for application signing which includes:

– a recommendation to use at least LMSwith the SHA-256/192 parameters or XMSSwith any
parameters

– deprecation of all other algorithms by 2025 (2030 for current deployments)

• a requirement to use FIPS PUB 197 for symmetric block cipher encryption, requiring 256-bit
keys (systems should already be doing this)

• a requirement to use FIPS PUB 180-4 for hashing, requiring either the SHA-384 or SHA-512
algorithms (systems should already be doing this)

• a requirement to use CRYSTALS-Kyber for public-key encryption, requiring Level V parameters
and a deprecation of RSA, DH, and ECC once implemented by 2035

• a requirement to use CRYSTALS-Dilithium for digital signatures by 2035

Navigating these newrequirements imposes a technical hurdle, and acquisitionmanagers should
prepare for this move in their timelines. This article attempts to help explain the requirements at
a technical level to help drive the transition. At the time of this writing, the algorithms in CNSA 2.0
are not included in any mainline cryptography libraries. For the examples, the Open Quantum Safe
(OQS) ProjectOpenSSL 1.1.1-stable snapshot 2022-08 (https://github.com/open-quantum-safe/
openssl/releases/tag/OQS-OpenSSL-1_1_1-stable-snapshot-2022-08) is used on a vanilla
Ubuntu 22.04 installation, and the reference implementations for all algorithms are used for key im-
plementation.

1.1 Software and Firmware Signing

Software and firmware signing can begin transitioning to CNSA 2.0 immediately with plans to retire
CNSA 1.0 support.

Current PKI infrastructure in the DoD only supports using RSA for digital signatures. Never-
theless, the LMS reference implementation includes LMS key generation and signature verification
for LMS with SHA-256, one of the permitted signature algorithms in NIST SP 800-208.[1, § 4.1] Us-
ing the demo application that is available with the reference from https://github.com/cisco/
hash-sigs, an application/firmware hashing mechanism can be implemented:

1 $ . / demo genkey mykey 10/8 ,5 /1
2 $ . / demo sign mykey myapp. exe
3 $ . / demo verify mykey myapp. exe

Listing 1: LMS Signature of myapp.exe

2

https://github.com/open-quantum-safe/openssl/releases/tag/OQS-OpenSSL-1_1_1-stable-snapshot-2022-08
https://github.com/open-quantum-safe/openssl/releases/tag/OQS-OpenSSL-1_1_1-stable-snapshot-2022-08
https://github.com/cisco/hash-sigs
https://github.com/cisco/hash-sigs


CNSA 1.0 CNSA 2.0
Advanced Encryption Standard (AES) using
256-bit keys

Advanced Encryption Standard (AES) using
256-bit keys

Table 2: Symmetric Block Ciphers: CNSA 1.0 vs 2.0

CNSA 1.0 CNSA 2.0
Secure Hash Algorithm 2 (SHA-2) with 384-bit
digests (SHA-384)

Secure Hash Algorithm 2 (SHA-2) with 384-bit
or 512-bit digests (SHA-384 or SHA-512)

Table 3: Hashing: CNSA 1.0 vs 2.0

Line 1 will generate a mykey.prv and a mykey.pub file using 2 levels of Merkle trees. The first
level has a height of 10 and Winternitz parameter of 8, and the second level a height of 5 and Win-
ternitz parameter of 1. The NIST 800-208 standard permits Merkle tree heights of 5, 10, 15, 20, or
25, and RFC 8554 specifies that the Winternitz parameter may be 1, 2, 4, or 8. There are limits to the
number of signatures an LMS key can be used for, and higher Merkle tree heights can take a long
time to generate a key (it took nearly 2 hours for me to generate a key with h = 25). At h = 5, the key
is only good for a handful of signatures. Generally speaking, larger Merkle tree heights take longer
to generate but can be safely used for more signatures. Higher Winternitz parameters minimize
the signature size while increasing the time. RFC 8554 documents that a single Merkle tree level
generated with 15/8will be good for about 30,000 signatures, while a 2-level Merkle tree generated
with 25/8,15/8 would be good for more than 1 trillion signatures.

Line 2 signs a file (in this case, an executable) using mykey.prv. This generates a myapp.exe.sig
file with the signature. An additional note of caution should be made: each signature advances the
private key. mykey.prv changes after every valid signature. If signatures are generated using the
same key information more than once, the security of those hashes may leak information about the
private key. Backing up the private key is not sufficient: a backup solution must back up the key
with the number of signatures that have been made using it, and a restoration process must advance
the key by that many signatures.

Line 3 only needs to have mykey.pub present to verify the signature on another machine.

1.2 Symmetric Key Algorithms

No change is made between CNSA 1.0 and CNSA 2.0 for symmetric block ciphers. AES with 256-bit
keys is the only algorithm permitted.

1.3 Hashing

CNSA 2.0 officially adds SHA-512 as an approved hash, but continues to permit SHA-384 as an ap-
proved hashing algorithm.

Somemaynotice that internal hashes in the software andfirmware signing algorithmsuse smaller
hash sizes or different hashing algorithms. For example, LMS permits the use of SHAKE-256, one of
the unapproved SHA-3 algorithms from FIPS 202, internally. “NSA has no concerns about this, but
does not anticipate approving SHA-3 algorithms for general-purpose use at this time.”[4]

1.4 Asymmetric Digital Signatures and Key Establishment

CNSA 2.0 deprecates all of the algorithms of CNSA 1.0, requiring the use of the CRYSTALS-Dilithium
algorithm.

To achieveNIST Level V functionality for the CRYSTALS-Kyber algorithm, the CRYSTALS-Kyber pa-
rameters must be set to use Kyber1024 or Kyber1024-90s. While both parameter sets are permitted

3



CNSA 1.0 CNSA 2.0
Rivest-Shamir-Adleman (RSA) with minimum
3072-bit modulus
Elliptic Curve Digital Signature Algorithm
(ECDSA) using curve P-384
Diffie-Hellman (DH) Key Exchange with mini-
mum 3072-bit modulus
Elliptic Curve Diffie-Hellman (ECDH) Key
Exchange using curve P-384

CRYSTALS-Kyber at Level V
CRYSTALS-Dilithium at Level V

Table 4: Asymmetric Digital Signature and Key Establishment: CNSA 1.0 vs 2.0

by CNSA 2.0, Kyber1024 uses SHAKE and SHA-3 internally, both of which, on their own, are unap-
proved algorithms. Instead, Kyber1024-90s uses AES-256-CTR and SHA-2 internally, using SHAKE-
256 only for the Extendable-Output Function (XOF).

Amazon Web Services (AWS) and the Open Quantum Safe (OQS) project implement CRYSTALS.
While production implementations are not recommended yet, configuring the OQS port of OpenSSL
so that it uses CRYSTALS-Kyber can be done with the command in Listing 2. This will configure
OpenSSL to use the CNSA 2.0 implementations of Kyber1024.

$ . / Configure �DOQS_DEFAULT_GROUPS="kyber1024 , p521_kyber1024 , kyber90s1024 , p521_kyber90s1024 "

Listing 2: Configuring OpenSSL TLS 1.3 for using CRYSTALS-Kyber

Youmay notice that the implementation in OQSOpenSSL includes key exchange using ECDHwith
the P-521 curve, a curve not permitted under CNSA 1.0 and 2.0. There is not yet a reference imple-
mentation for OQS using CRYSTALS-Dilithium; however, we should see updates to the standard to
implement this soon. Currently, only the Dilthium5 parameter sets achieve NIST Level V functional-
ity. Currently, both Dilithium5 and Dilithium5-AES (where AES-256-CTR and SHA-2 are used instead
of SHAKE-256) achieve the CNSA 2.0 parameter goals. This creates a public key of 2592-bytes and a
secret key of 4864-bytes.

During the CNSA 1.0 to 2.0 transition, there will likely be several years where both implementa-
tions continue to exist. During this time period, expect to see several hybrid implementations (such
as Kyber’s “90s” parameter sets and Dilthium’s AES algorithm options. These will likely begin to fade
out of use as the 1.0 suite continues its slow march to obsolescence.

1.5 Conclusion

We are likely more than a decade away from seeing CNSA-2.0-only implementations; however, for
project acquisitions and contract writers, it may be necessary to plan for these architecture changes
before the next contract awards. The CNSA 2.0 implementation timeline indicates that the hybrid
approaches will start rolling out in the 2025 timeframe with preference given to the 2.0 algorithms
over the 1.0 algorithms by 2030. Finally, we should see the obsolescence of 1.0 as it is replaced
with 2.0-only implementations in the 2033-2035 timeframe. As with most government mandates,
expect delays, but prepare for the best. We’ll know if the timeline is on-track if the final CRYSTALS
parameter sets are published by the end of 2024.

4



References

[1] David Cooper et al. Recommendation for Stateful Hash-Based Signature Schemes. Tech. rep. Spe-
cial Publication (SP) 800-208. Washington, D.C.: National Institute of Standards and Technology,
2020. doi: 10.6028/NIST.SP.800-208. url: https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-208.pdf.

[2] Jon Hood, ed. SwATips. https://www.SwATips.com/.

[3] National Security Agency. “Announcing the Commercial National Security Algorithm Suite 2.0”.
In: (2022). url: https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_
CNSA_2.0_ALGORITHMS_.PDF.

[4] National Security Agency. “The Commercial National Security Algorithm Suite 2.0 and Quan-
tum Computing FAQ”. In: (2022). url: https : / / media . defense . gov / 2022 / Sep / 07 /
2003071836/-1/-1/0/CSI_CNSA_2.0_FAQ_.PDF.

5

https://doi.org/10.6028/NIST.SP.800-208
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-208.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-208.pdf
https://www.SwATips.com/
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071836/-1/-1/0/CSI_CNSA_2.0_FAQ_.PDF
https://media.defense.gov/2022/Sep/07/2003071836/-1/-1/0/CSI_CNSA_2.0_FAQ_.PDF

	Commercial National Security Algorithm (CNSA) Suite 2.0
	Software and Firmware Signing
	Symmetric Key Algorithms
	Hashing
	Asymmetric Digital Signatures and Key Establishment
	Conclusion


