
Software Assurance Tips
A product of the Software Assurance Tips Team[3]

Jon Hood

Monday 29th November, 2021

1

1 Malicious Injection of Source Code

Updated Monday 29th November, 2021

Suppose that you are a spy, tasked with embedding a malicious backdoor into enemy source
code. After being hired onto the team, you find that every line of code is subject to manual code
reviews. One of the best ways to hide a Trojan is in plain sight: directly in the source code that’s
being reviewed.

1.1 Unicode Injections

One of my favorite types of attacks is the homoglyph attack.[2] Developers can embed a function so
deeply into code with the apparent same name as a benign-looking version of the function. Consider
the homoglyphs used in Boucher and Anderson’s example in Figure 1.[1] By using a Cyrillic Н and
hiding the malicious sayНello() deep into the code, the developers could be tricked into thinking
that a different function is being called.

#include <iostream >
void sayHello () {

std : : cout << " Hello , World ! \ n" ;
}
void sayНello() {

std : : cout << "Goodbye , World ! \ n" ;
}
int main () {

sayНello() ;
return 0;

}

Listing 1: Homoglyphic Function

But my favorite type of injection involves the use of bidirectional (BIDI) unicode symbols. Using
these symbols, the order of display can be changed from the order of compiler evaluation. Consider
the function in Figure 2. While functions or a return value may appear to be commented out on a
web browser or development IDE, they are actually part of the code and become a sneaky way to
inject logic that appears commented out to a reviewer.

#include <iostream >

bool isAdmin ()
{

/* I f we are an admin , / * / return true ;
std : : cerr << "You are not an admin . " << std : : endl ;
return fa l se ;

}

int main ()
{

i f (isAdmin ())
{

std : : cout << "You are an admin . " << std : : endl ;
}
else
{

std : : cout << "You are NOT an admin . " << std : : endl ;
}
return 0;

}

Listing 2: Comment Reordering

2

References

[1] Nicholas Boucher and Ross Anderson. “Trojan Source: Invisible Vulnerabilities”. In: Preprint
(2021). arXiv: 2111.00169 [cs.CR]. url: https://arxiv.org/abs/2111.00169.

[2] Jon Hood. “Homoglyphs and Homographic Attacks”. In: SwATips.com (2021). url: https://
www.swatips.com/articles/20210510.html.

[3] Jon Hood, ed. SwATips. https://www.SwATips.com/.

3

https://arxiv.org/abs/2111.00169
https://arxiv.org/abs/2111.00169
https://www.swatips.com/articles/20210510.html
https://www.swatips.com/articles/20210510.html
https://www.SwATips.com/

	Malicious Injection of Source Code
	Unicode Injections

