
Software Assurance Tips
A product of the Software Assurance Tips Team[2]

Kevin Keen

Monday 4th October, 2021

1

1 Perls of Wisdom: Use of Two-Argument Form of open()

Updated Friday 14th October, 2022

We see far less Perl code than some other languages. Nevertheless, as with any language, there
are security concerns that are particular to Perl.

Consider the following short Perl script in Listing 1.

my $in_filename ;
my $out_filename ;
i f (scalar @ARGV < 1) {

print ”Usage : $0 < input_f i le >” ;
exit ;

}
else {

$in_filename = $ARGV[0] ;
$out_filename = ” that_$in_filename ” ;

}
open ($ in_f i le , ” $in_filename”) ;
open ($out_f i le , ”>$out_filename”) ;
while (< $ in_f i le >) {

$line = $_ ;
print ” $line ” ;
i f ($line =~ / This i s a /) {

$line =~ s / This i s a / That i s a / ;
print ” F i r s t Match ! \ n” ;

}
els i f ($line =~ / This i s only /) {

$line =~ s / This i s only / That i s only / ;
print ”Second Match ! \ n” ;

}
print $out_ f i le $line ;

}

Listing 1: Sample Perl Script

This script will read in the input file, perform some substitutions (changing “This” to “That”) and
write out the results to another file. With Perl’s deeply ingrained regex facilities, such string and
file processing is very typical of a Perl script. The input file name is passed in as a command line
argument. The output filename is derived by prepending that_. As with a lot of Perl scripts, this
one is written to be run against input files with very specific contents. In this case, it expects the
input file to contain the input displayed in Listing 2. The output of the intended use of this script is
shown in Listing 3.

This i s a test
This i s only a test

Listing 2: Sample Input

$ l s
t e x t f i l e th i s_ to_ that . pl

$ cat t e x t f i l e
This i s a test
This i s only a test

$ perl th i s_ to_ that . pl t e x t f i l e
This i s a test

2

Firs t Match !
This i s only a test
Second Match !

$ cat t ha t _ t ex t f i l e
That i s a test
That i s only a test

Listing 3: Sample Execution

The biggest security concern here comes from the use of the two argument form of open, which
in some cases, can actually result in shell execution! Contained in the two open statements shown
in the above source, you will notice that one filename is prefixed with “>”, but the first open has no
prefix. The “>” character on the second open tells Perl to open the file for output. The first open is
implicitly open for input. This doesn’t look bad just looking at the source, but Perl has built-in magic
that makes this a security disaster. In this kind of case, if the filename starts with, or ends with
a pipe symbol (|), Perl interprets that as requesting execution of a shell command. Note that the
location of the pipe symbol also has meaning to Perl. A pipe symbol before the command indicates
a shell command that should be written to. A pipe symbol after the command indicates a shell
command that should be read from. Thismeans that abusing this formof open is as easy as providing
a malicious filename.

$ l s
t e x t f i l e th i s_ to_ that . pl

$ perl th i s_ to_ that . pl ” touch in_a_shell_command|”

$ l s
in_a_shell_command ' that_touch�in_a_shell_command| '
t e x t f i l e th i s_ to_ that . pl

Listing 4: Malicious Execution

Listing 4 shows the result of running the script with a malicious filename resulting in the file
“im_a_shell_cmd” being created. The other new file, “that_touch im_a_shell_cmd|”, is created by the
script as part of its normal output. Of course in this case we already had shell access, but consider
the case where the filename is coming from an external attack such a socket or web interface.

This security disaster can be partially mitigated by explicitly specifying that the file should be
open for input. If a leading “<” is provided (similar to the second open statement), Perl will assume
the filename is just a filename even if a pipe symbol appears. If all of that were not enough, this
version of open can cause problemswhenwe can’t even see it because a number of other constructs
use the two argument version of open behind the scenes. The examples in Listing 5 are all implicitly
using the two argument form of open.[3] Such constructs should be avoided, and the 3 argument
form of open used instead of the two argument version.[1]

while (<ARGV>)
while (< >)
perl -n ' print�” : : �$_ \n” ; ' *
perl -p ' $_�=�” : : �$_ \n” ; ' *

Listing 5: Examples

1.1 Bonus Tip

Using “<” or “>” on the two argument form of open is not enough to solve thewoes of using it because
Perl has even more magic up its sleeve. A filename of dash is interpreted to mean STDIN. Although
explicitly providing the inputmode character “<” avoids the command injection, we still have a very

3

viable denial of service. Often, a string is concatenated before being passed to open. One question
that arises is “when will dash be considered to be STDIN”. Both with and without the explicit “<”
symbol, both –, and “-“, as a command line argument is interpreted by Perl to mean STDIN. But what
of the case where dash is concatenated? It seems backwards, but when the explicit “<” character is
not provided, “- something” is not interpreted to mean STDIN. However, when “<” IS provided the
same input will result in an attempt to read from STDIN.

4

References

[1] Jordan Dimov. Security Issues in Perl Scripts. url: https://www.cgisecurity.com/lib/
sips.html (visited on 10/04/2021).

[2] Jon Hood, ed. SwATips. https://www.SwATips.com/.

[3] David Svoboda. IDS31-PL. Do not use the two-argument form of open(). Nov. 16, 2017. url:https:
//wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88890543 (visited
on 10/04/2021).

5

https://www.cgisecurity.com/lib/sips.html
https://www.cgisecurity.com/lib/sips.html
https://www.SwATips.com/
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88890543
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88890543

	Perls of Wisdom: Use of Two-Argument Form of open()
	Bonus Tip

