
Software Assurance Tips
A product of the Software Assurance Tips Team[1]

Jon Hood

Monday 2nd August, 2021

1

1 Stripping: An Inefficient Obfuscation Technique

Updated Monday 30th August, 2021

Recently, we were given a piece of software with special handling instructions. The software
contained a functionwhichwas supposed to be protected: enemies, competitors, andno onewithout
a need-to-know was to ever see how this function manipulated the parameters it was given.

While reviewing the security of the software, we discovered that the developer compiled the
binary and released it on their website. When asked how they were able to release such a private
routine publicly, the customer claimed that it was fine to release in binary form. Supposedly, the
compilation method they used removed the “context of the Human-Readable Source Code used to
generate the Machine-Readable Object Code from propagating into the Machine-Readable Object
Code.”

Let’s put this claim to the test! For the sake of creating a fully unclassified example, suppose that
no one has ever created a function for calculating factorials, and a new intern fresh out of college
submits the code in Listing 1 to solve this highly-secretive, important function.

#include <stdio . h>
#include <s td l ib . h>
void fac tor ia l (int argc , char *argv [])
{ / / SUPER SEKRIT FACTORIALS

unsigned long long ret = 1;
int maxVal = atoi (argv [1]) ; / / 0<=maxVal<=20
for (int i = 1 ; i <= maxVal ; i ++)

ret = ret * (unsigned long long) i ;
pr intf (”%l lu \n” , ret) ;

}

Listing 1: Unsafe Factorial Function

When compiled into machine code, the function isn’t nearly as easy to follow. Figures 2 and 3
show the unstripped and stripped functional machine code respectively. Had the software been
compiled in debug mode, the source code would have been included alongside the machine code.

2

push %rbp
mov %rsp ,%rbp
sub $0x30,%rsp
mov %ecx ,0x10(%rbp)
mov %rdx ,0x18(%rbp)
movl $0x1 , �0x4(%rbp)
mov 0x18(%rbp) ,%rax
add $0x8,%rax
mov (%rax) ,%rax
mov %rax,%rcx
ca l l 29 < fac tor ia l +0x29>
mov %eax , �0xc(%rbp)
movl $0x1 , �0x8(%rbp)
jmp 45 < fac tor ia l +0x45>
mov �0x8(%rbp) ,%eax
mov �0x4(%rbp) ,%edx
imul %edx,%eax
mov %eax , �0x4(%rbp)
addl $0x1 , �0x8(%rbp)
mov �0x8(%rbp) ,%eax
cmp �0xc(%rbp) ,%eax
j l e 35 < fac tor ia l +0x35>
mov �0x4(%rbp) ,%eax
mov %eax,%edx
lea 0x0(%rip) ,%rax # 59 < fac tor ia l +0x59>
mov %rax,%rcx
ca l l 61 < fac tor ia l +0x61>
nop
add $0x30,%rsp
pop %rbp

Listing 2: Unstripped Machine Code

push %rbp
mov %rsp ,%rbp
sub $0x30,%rsp
mov %ecx ,0x10(%rbp)
mov %rdx ,0x18(%rbp)
movl $0x1 , �0x4(%rbp)
mov 0x18(%rbp) ,%rax
add $0x8,%rax
(%rax) ,%rax
mov %rax,%rcx
ca l l 0x29
mov %eax , �0xc(%rbp)
movl $0x1 , �0x8(%rbp)
jmp 0x45
mov �0x8(%rbp) ,%eax
mov �0x4(%rbp) ,%edx
imul %edx,%eax
mov %eax , �0x4(%rbp)
addl $0x1 , �0x8(%rbp)
mov �0x8(%rbp) ,%eax
cmp �0xc(%rbp) ,%eax
j l e 0x35
mov �0x4(%rbp) ,%eax
mov %eax,%edx
lea 0x0(%rip) ,%rax # 0x59
mov %rax,%rcx
ca l l 0x61
nop
add $0x30,%rsp
pop %rbp

Listing 3: Stripped Machine Code

As can be seen by the stripped vs. unstripped comparison, there is very little (other than the
function name) that is different. In fact, once this code is sent through a decompiler (using Binary
Ninja), the decompiled code can be seen in figures 4 and 5.

int64_t fac tor ia l (int32_t arg1 , void* arg2)
{

int32_t var_c = 1;
int32_t rax_3 = atoi (* (arg2 + 8)) ;
for (int32_t var_10 = 1; var_10 s

<= rax_3 ; var_10 = var_10 + 1)
var_c = var_10 * var_c ;

return printf (_ . rdata , zx . q(var_c)) ;
}

Listing 4: Unstripped Decompilation with Bi-
nary Ninja

int64_t sub_100401080 (int32_t arg1 , void* arg2)
{

int32_t var_c = 1;
int32_t rax_3 = atoi (* (arg2 + 8)) ;
for (int32_t var_10 = 1; var_10 s

<= rax_3 ; var_10 = var_10 + 1)
var_c = var_10 * var_c ;

return printf (data_100403000 , zx . q(var_c)) ;
}

Listing 5: Stripped Decompilation with Bi-
nary Ninja

While compilation and obfuscation definitelymake itmore difficult to glean the originalmeaning
of software, it’s not impossible to trace through the decompilation and figure out the original intent
of the developer. If source code is protected because of what it does, the binary generated from that
source code should probably be handled with the same protections.

3

References

[1] Jon Hood, ed. SwATips. https://www.SwATips.com/.

4

https://www.SwATips.com/

	Stripping: An Inefficient Obfuscation Technique

