Software Assurance Tips

A product of the Software Assurance Tips Team[3]

Stacy Lukins
Monday 28™ June, 2021



OO0 JDUl ik WN -

1 Coverity and Integer Overflows

Updated Friday 6% August, 2021

Integer overflows have been at the root of a number of security vulnerabilities in software over
the years (see [2] for examples), such as the recently identified issue in which the result of an
unchecked integer operation is used for memory allocation in a number of real time operating sys-
tems.[1] The ability of static analysis tools to detect these types of integer overflow problems vary.
This article explores how Coverity identifies integer overflow.

It would not be especially helpful for a tool to flag every integer operation as a potential overflow.
Thus, tools need some way to differentiate potentially problematic integer operations from seem-
ingly safe integer operations. Coverity does this by only reporting a defect on an integer operation
when the following 3 conditions are met: (1) The operands are determined to be tainted sources,
(2) the operation is addition or multiplication (by default), and (3) the operation’s result goes to a
data sink.[4] All of these conditions can be overridden by setting various checker options. For ex-
ample, you can change which data sources are treated as tainted and which integer operations are
examined.

It’s important to understand how Coverity defines tainted sources and sinks. Data can come into
a program from a variety of outside sources (command line, console, filesystem, database, environ-
ment variable, RPC request, HTTP request, HTTP header, etc.). When data from an outside source
has not been scanned and validated, it is considered to be tainted, or unsafe. Coverity tracks tainted
data through a program, and it will detect and report whether the tainted data is used in a sink. A
sink is any source code element, such as a function, that must be protected from tainted data. Sinks
can be things like memory allocators, certain system calls, array index operations, and so on.

The simple functions in the (very C-like) C++ code in Listing[I|will be used to illustrate how Cover-
ity identifies integer overflow.

int fun_1(0) {

int i = 0;
std::cin >> 1i; // tainted source
int j =1 + 5; // int overflow if i is too large
return j; // data sink
}
int fun 2(int val) { // val not considered tainted (w/ default options)
int j = val + 5; // no int overflow here (w/ default options)
return j; // data sink
}
int call_ fun_2() {
int i = 0;
std::cin >> 1i; // tainted source
int j = fun_2(i); // calling fun_2 with tainted data
return j; // data sink
}
int g = 0; // global
void fun_3() {
int i = 0;
std::cin >> 1i; // tainted source
g=1+5; // no sink after this, so no int overflow flagged
}
int fun_4(int val) { // can set option to consider param val to be tainted
int j = 0;

if (val < 100) { // checking val, so no longer tainted
j = val + 5; // will not overflow

}



32
33

return j; // data sink

}
Listing 1: Integer Overflow Examples

By default, the INTEGER_OVERFLOW checker in Coverity is not enabled and must be enabled by
using the - -enable option of the cov-analyze command. Be aware that the --all option does
not enable the INTEGER_OVERFLOW checker.[4] The command in Listing 2] enables integer overflow
checking with default options and was used to analyze the code in Listing[l}

cov-analyze --dir <path_to_code_idir> --aggressiveness-level high --all --enable
INTEGER OVERFLOW

Listing 2: Cov-analyze Parameters

The first function, fun_1, is a simple overflow example that will be caught by Coverity when the
INTEGER_OVERFLOW checker is enabled with default checker options. In fun_1, i comes from an
outside source (the command line, line 3) and is not scanned or validated, which makes the data
tainted. A potential overflow occurs on line 4 (i could be close to or at the max integer value), and
the potentially overflowed value is sent to a data sink on line 5 (returns are treated as data sinks by
default in Coverity). Note that the sink could have been something like a memory allocation instead
of a return. Coverity will identify this as an integer overflow defect, since it meets the 3 conditions
discussed previously.

The integer overflow in fun_1 is the only integer overflow defect in the source code above that
Coverity will identify using the default options of the INTEGER_OVERFLOW checker. Consider fun_2,
which contains the same addition operation and sink as fun_1. Coverity will not flag this as a poten-
tial integer overflow, even when a tainted source is passed in from the call_fun_2 function on line
16. By default, Coverity does not consider parameters to be tainted sources, so this example does
not meet the tainted source condition and Coverity does not flag it.

Now consider fun_3, which does contain a tainted source (command line input that is not checked)
and performs the same addition operation. However, there is no sink in this function, so it does not
meet the third condition and Coverity does not flag this operation as a potential integer overflow
problem.

Checker options can be used to change the way Coverity identifies tainted sources and sinks. For
example, the enable_tainted_params option can be set to true to cause Coverity to automatically
treat all function parameters as tainted. Option values for checkers are set by passing - -checkexr -
option or -co to the cov-analyze command. We can re-analyze the source code using the command
in Listing[3which enables the INTEGER_OVERFLOW checker and sets the enable_tainted_params
option to true.

cov-analyze --dir <path_to_build_idir> --aggressiveness-level high --all --enable
INTEGER OVERFLOW -co INTEGER OVERFLOW:enable_tainted_params:true

Listing 3: Cov-analyze Parameters for Tainted Parameters

Now Coverity will also flag the addition operation in fun_2 as an integer overflow, since the
parameter val is considered tainted (the first condition is now met).

The addition operation in the last function, fun_4, will not be flagged by Coverity as an integer
overflow with either cov-analyze command used. In fun_4 the function parameter val is consid-
ered a tainted source when passed in. However, the parameter is tested on line 29 before the addi-
tion occurs (so it is no longer tainted), and an integer overflow will not occur when the addition is
performed. Coverity recognizes this and does not does not flag the operation.

There are many options you can set that affect the way Coverity identifies tainted sources and
sinks. In addition, the aggressiveness level affects some of the INTEGER_OVERFLOW options as well.
See the Coverity Checker Reference[4] for more information.



References

[1] US-CERT.ICS Advisory (ICSA-21-119-04): Multiple RTOS (Update B). CISA. May 20, 2021. urL: https:
//us-cert.cisa.gov/ics/advisories/icsa-21-119-04 (visited on 06/28/2021).

[2] CWE Content Team. “CWE-190: Integer Overflow or Wraparound”. In: (2021). URL: https://
cwe.mitre.org/data/definitions/190.html.

[3] Jon Hood, ed. SWATips. https://www.SwATips.com/,
[4] Synopsis, Inc. “Coverity 2020.09 Checker Reference”. In: (2020).



https://us-cert.cisa.gov/ics/advisories/icsa-21-119-04
https://us-cert.cisa.gov/ics/advisories/icsa-21-119-04
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/190.html
https://www.SwATips.com/

	Coverity and Integer Overflows

