
Software Assurance Tips
A product of the Software Assurance Tips Team[4]

James Shelton

Monday 17th May, 2021

1



1 Secure Pseudo-Random Number Generation

Updated Friday 6th August, 2021

1.1 Definition

As the name implies, pseudo-random number generation (PRNG) does not produce a truly random,
indeterminate value. The exact nature of this pseudo-randomness varies between languages and
implementations, but essentially, PRNG is accomplished via an algorithm that uses mathematical
formulae or precalculated tables to produce numerical values that appear random.[3]

However, a common characteristic of allmethods of PRNG is that they are deterministic, meaning
that they require an initial seed in the formof another numerical value, and that, if the seed is known
and replicated exactly, the PRNGwill produce the exact same resultsmultiple times. These seeds can
take the form of literal values or variable representation of other, unrelated values, such as system
time.

Another property of PRNG is that the values it generates are periodic, meaning that, due to the
finite amount of pseudo-random values a given implementation can generate, the output will even-
tually begin to repeat.

1.2 Examples

Most common programming languages have built-in PRNG implementations. The method rand(),
defined in the C Standard General Utilities Library, is perhaps the most basic PRNG function in the
C family, using a seed, provided by the developer as an argument to an earlier call to the method
srand(), to return an integer value between zero and the language-defined constant RAND_MAX.[8]
C++11 expands upon these PRNG capabilities in its <random> header, which introduces numerous
PRNG implementations, fromuniform distributors to algorithmic implementations of variousmath-
ematical distributions.[6]

Likewise, Java implements a random series of methods, found in the Random class of the java-
.util.Random object, which function similarly to the C rand() function but can be specified to
accept as a seeds and output values of other numeric data types.[7]

1.3 Issues

Because of the deterministic and periodic factors, the use of PRNG in a security context is typically
discouraged, as the requirement of a defined seed and the finite amount of possible outcomesmeans
that, even if an attacker is not aware of the initial condition, a supposedly random value can be re-
alistically guessed by the use of brute force alone. Still, PRNG has its place in such contexts, as it is
generally considered significantlymore efficient and practical to implement than true randomnum-
ber generation (TRNG), as TRNG extracts randomness from captured aspects of physical phenom-
ena, such as radioactive decay or atmospheric noise, which most commercially available computer
hardware is simply not equipped to do.

An example of a use of PRNG in an identification and authentication scenario is the creation of
a temporary session ID for a user. The viability of this implementation is entirely dependent on
the source of the seed value used in the PRNG algorithm. One hypothetical source is a given user’s
authentication ID, but this value is the same each time the user logs in. Another option is that of
the system time in Unix Time format, which, on one hand, is guaranteed to change each second. On
the other hand, an attacker could replicate a Unix Time string corresponding with a date and time
at which any given user is likely to be authenticating (say, a weekday at around 9:00AM), and, with
enough luck, could potentially spoof the session ID of an active, verified user simply by correctly
guessing what time they logged on, a tactic that only increases in viability the more users a system
supports.

2



From a software assurance perspective, in the event of scenario similar in scope to the previous
example, reported issues will usually adhere to a vulnerability description enumerated as CWE-337
or CWE-338,[1, 2] the former with respect to the use of the seeded value and the latter with respect
to the PRNG function itself. Occasionally, both will occur concurrently for the same instance.

1.4 Mitigations

In general, the larger andmore arbitrary the seed, the less likely the likely the PRNG implementation
can be exploited by an attacker. Or, at least, it would result in exploitation attempts taking longer
to accomplish, thus increasing the chance of the attack being noticed before the attacker succeeds.
Regardless, the very presence of a PRNG implementation is overwhelmingly likely to be documented
as an issue by a scan tool, but the security of such of an implementation can still be ensured through
a multilayered approach tailored to fit the specific context in which the pseudo-random value is
being used.

In an authentication context, imposing a limit to the number of times a user can unsuccessfully
supply valid credentials and/or placing a restriction on subsequent attempts can mitigate attacks
based around exploiting PRNG to replicate a valid set of credentials or the privileges attached to a
valid set of credentials.

In a cryptographic context, the use of algorithmswhose PRNG has been sufficiently tested and in-
dependently verified is the bestway tomitigate potential issues. A list of randomnumber generators
approved for use in cryptographic modules can be found in Annex C of the FIPS 140-2 publication
from the Information Technology Laboratory of the National Institute of Standards and Technol-
ogy.[5]

3



References

[1] CWEContent Team. “CWE-337: Predictable Seed in Pseudo-RandomNumberGenerator (PRNG)”.
In: (2020). url: https://cwe.mitre.org/data/definitions/337.html.

[2] CWE Content Team. “CWE-338: Use of Cryptographically Weak Pseudo-Random Number Gen-
erator (PRNG)”. In: (2021). url: https://cwe.mitre.org/data/definitions/338.html.

[3] Mads Haahr. “Introduction to Randomness and Random Numbers”. In: RANDOM.ORG (2021).
url: https://www.random.org/randomness/.

[4] Jon Hood, ed. SwATips. https://www.SwATips.com/.

[5] National Institute of Standards andTechnology. Annex C: Approved Random Number Generators for FIPS PUB 140-2. Security Requirements for Cryptographic Modules.
Department of Commerce. 2019. url:https://csrc.nist.gov/CSRC/media/Publications/
fips/140/2/final/documents/fips1402annexc.pdf.

[6] Various. “<random>”. In: cplusplus.com (2021). url:https://www.cplusplus.com/reference/
random/.

[7] Various. “Class Random”. In: Java 8 Documentation (2021). url: https://docs.oracle.com/
javase/8/docs/api/java/util/Random.html.

[8] Various. “rand”. In: cplusplus.com (2021). url: https://www.cplusplus.com/reference/
cstdlib/rand/.

4

https://cwe.mitre.org/data/definitions/337.html
https://cwe.mitre.org/data/definitions/338.html
https://www.random.org/randomness/
https://www.SwATips.com/
https://csrc.nist.gov/CSRC/media/Publications/fips/140/2/final/documents/fips1402annexc.pdf
https://csrc.nist.gov/CSRC/media/Publications/fips/140/2/final/documents/fips1402annexc.pdf
https://www.cplusplus.com/reference/random/
https://www.cplusplus.com/reference/random/
https://docs.oracle.com/javase/8/docs/api/java/util/Random.html
https://docs.oracle.com/javase/8/docs/api/java/util/Random.html
https://www.cplusplus.com/reference/cstdlib/rand/
https://www.cplusplus.com/reference/cstdlib/rand/

	Secure Pseudo-Random Number Generation
	Definition
	Examples
	Issues
	Mitigations


