
Software Assurance Tips
A product of the Software Assurance Tips Team[1]

Jon Hood

Monday 26th April, 2021

1

1 Polymorphic Catch Performance in C#

Updated Friday 6th August, 2021

In a recent code review, one of our customers were marked for being sloppy with catch-all ex-
ceptions (CWE-396), which is sometimes an indicator of poorly designed program flow. To fix this,
the developers changed the catch blocks to something like the one in Listing 1.

1 try
2 { DoSomethingWith ("C : \ \ F i le . tx t ") ; }
3 catch (Exception e) when (e is FileNotFoundException)
4 { DoSomethingElse (e) ; }

Listing 1: When-Conditioned Exception

The intent of a “when” clause in an exception is for situations where the exception may have an
error code. For example, a SqlExceptionmay return different codes that can be used to differentiate
their catch blocks and clean up a failed state. So how does the code in Listing 1 differ from the code
in Listing 2?

1 try
2 { DoSomethingWith ("C : \ \ F i le . tx t ") ; }
3 catch (FileNotFoundException e)
4 { DoSomethingElse (e) ; }

Listing 2: Classically-Conditioned Exception

While both blocks of code achieve the same result, the generated code to catch the exception
in Listing 1 has twelve times as many instructions to execute. The .NET Intermediate Language
(IL) is very different between the two implementations. The “when” clause creates what the IL
defines as a filter block and instantiates a structure similar to a truth stack. This additional structure
and the extra operations on it reduce performance and add unnecessary bloat to the software. The
generated IL can be compared in Listings 3 and 4. The IL was created in optimized Release mode.

1 f i l t e r {
2 IL_000d : i s i n s t [System . Runtime]System . Exception
3 IL_0012 : dup
4 IL_0013 : brtrue . s IL_0019
5 IL_0015 : pop
6 IL_0016 : ldc . i4 .0
7 IL_0017 : br . s IL_0024
8 IL_0019 : i s i n s t [System . Runtime]System . IO . FileNotFoundException
9 IL_001e : ldnull

10 IL_001f : cgt . un
11 IL_0021 : ldc . i4 .0
12 IL_0022 : cgt . un
13 IL_0024 : endf i l ter
14 }

Listing 3: When-Conditioned Exception IL

1 catch class [mscorlib] System . IO . FileNotFoundException

Listing 4: Classically-Conditioned Exception IL

This leads to another question: what’s themost optimal way to catch several types of exceptions?
The most optimal way is to catch the general exception, then use polymorphism to operate on it
(code in Listing 5). The IL code adds a single comparison for each conditional in an if statement and
avoids the overhead incurred by the when clause’s filter block. Note that most scanning tools and
style checkers will identify Listing 5 as a catch for the generic exception, but this should be marked

2

as a false positive if the handler appropriately determines the failure scenarios for the appropriate
exception types. The IL code for Listing 5 up to the first exception type is shown in Listing 6. Please
also realize that such minimal performance gains should not be interpreted as a reason to violate a
consistent standard already established in a code base.

1 try
2 { DoSomethingWith ("C : \ \ F i le . tx t ") ; }
3 catch (Exception e)
4 {
5 i f ((e is FileNotFoundException) || (e is SecurityException))
6 DoSomethingElse (e) ;
7 else
8 Log (e) ;
9 }

Listing 5: If-Formatted Exception Chain

1 catch class [mscorlib] System . Exception {
2 IL_000d : i s i n s t [System . Runtime]System . IO . FileNotFoundException

Listing 6: If-Formatted Exception Chain IL

When performance is a primary concern, developers should include comments that indicate
their consideration of exceptional cases in generic catch blocks. Validators should watch for these
comments to help them mark the generic exception catches as false positives.

3

References

[1] Jon Hood, ed. SwATips. https://www.SwATips.com/.

4

https://www.SwATips.com/

	Polymorphic Catch Performance in C#

