
Software Assurance Tips
A product of the Software Assurance Tips Team[1]

Jon Hood

Monday 12th April, 2021

1

1 Sticking with a RAII Standard

Updated Monday 30th August, 2021

ResourceAcquisition Is Initialization (RAII).Whenworkingwith legacy code, variables andmem-
ory management often do not use RAII concepts. When memory is created in an uninitialized state,
developers risk the use of uninitialized memory further down in the application data flow.

To solve this, C++ implemented two ways of initializing new memory: default initialization and
value initialization. While default initialization is typically faster, developers quickly realized that
therewere rarely reasons to keepmemory uninitialized. Initializingmemory as soon as it’s allocated
keeps developers from shooting themselves in the foot.

One of the best ways to prevent memory errors is to use RAII. Particularly in exception-based
code, RAII concepts provide a memory-safe technique for resource management.[2] Several issues
face developers whenmaintaining legacy code with new programming concepts, particularly in the
DoD. Legacy code is generally void of RAII concepts and has not been built with the latest standards
of safe programming practices.

1.1 Updating the Code

The first option for maintaining legacy code in a memory-safe way is to update the code. Wrapping
old pointers in smart pointers can help make the code more maintainable.

bool *newBool = new bool () ;
i f (*newBool)

cout << "We' re�true ! "�<<�endl ;
else
��������cout�<<�"We' re fa lse ! " << endl ;
delete newBool ;

Listing 1: Non-compliant listing

auto newBool = make_shared<bool > () ;
/ / Another way: shared_ptr <bool > newBool (new bool ()) ;
i f (*newBool)

cout << "We' re�true ! "�<<�endl ;
else
��������cout�<<�"We' re fa lse ! " << endl ;

Listing 2: RAII-compliant listing

There are several issues with updating the old code to the RAII-compliant code:

1. Forgetting to remove the manual memory management can cause double-free errors.

2. Updating the code can cause translation issues (eg: between default and value initialization)

3. Inconsistency can increase maintenance burdens for maintained code.

4. Deletion of arrays require special handling.

1.2 Double Frees

Developers can introduce double free conditionswhere a pointer ismanagedbyboth a smart pointer
and in the code itself. Also, conditions arise when a single pointer is handed over to multiple smart
pointers for management.

At the time of this writing, the latest versions of Fortify, Coverity, Checkmarx, Parasoft, clang-
analyzer, and the GCC 10 -fanalyzer flag are all incapable of identifying the double free in Listings
3 and 4.

2

bool *newBool = new bool () ;
shared_ptr <bool> tes t1 (newBool) ;
shared_ptr <bool> tes t2 (newBool) ;
/ / . . .

Listing 3: Double Smart Pointer

bool *newBool = new bool () ;
shared_ptr <bool> tes t1 (newBool) ;
/ / . . .
delete newBool ;

Listing 4: Smart and Dumb Pointer

1.3 Initialization Errors

We’ve also seen a large number of initialization errors when updating to smart pointers. Using the
above examples, it’s tempting for a developer to use shortcuts and commit the error demonstrated
in Listing 5.

shared_ptr <bool> tes t1 (new bool) ;
cout << " Test1 i s : " << * tes t1 << endl ;

Listing 5: Uninitialized Boolean

The unpredictable nature of this issue can be demonstrated in the example in Listing 6 where
the Boolean uses default initialization and obtains a random value from previously-freed memory.

#include <cl imits >
#include <iostream>
#include <memory>
#include <random>
using namespace std ;
int main ()
{

random_device rd ;
mt19937 gen (rd ()) ;
uniform_int_distribution <> dis t r ib (INT_MIN , INT_MAX) ;
vector < int*> deleteLater ;
for (int i = 0 ; i < 100; i ++)
{

int *deleteMe = new int ;

*deleteMe = dis t r ib (gen) ;
/ / de le te some memory now
i f (*deleteMe > 0)

delete deleteMe ;
else

deleteLater . push_back (deleteMe) ;
}
shared_ptr <bool> newBool (new bool) ;
cout << "Value : " << *newBool << endl ;
/ / de le te some memory la ter
for (int *n : deleteLater)

delete n ;
return 0;

}

Listing 6: Uninitialized Boolean

3

1.4 Inconsistency Can Increase Maintenance Costs

Consider updated code that uses a multitude of different memory handling methods. Some mem-
ory is managed manually using malloc and free. Some pass the previous pointer values to smart
pointers for their management. Others have been updated to use the make_shared construct. Still
others have been updated to custom classes and structs.

Consistency is more important than updating. Introducing multiple memory handling patterns
to a section of code increases its complexity. If old memory handling methods cannot be replaced
or are not planned to be replaced, it may make more sense to stick with confusing (but consistent)
code rather than adding additional complexity.

1.5 Smart Pointers and Arrays

Finally, some special considerations are needed for allowing smart pointers to handle arrays. The
shared_ptr construct permits the developer to define a custom deleter like the one for this array
of 10 Booleans:

shared_ptr <bool> tes t1 {
new bool [10] , [] (const bool *ptr) { delete [] ptr ; }

} ;

Listing 7: Custom Deleter

1.6 Conclusion

Smart pointers and RAII concepts help developers prevent memory errors that can plague software.
Updating legacy code to RAII concepts can increase its maintainability, usefulness, and security.
Nevertheless, updates to the code should not come at a price of inconsistency. When updates can
only be applied partially or introduce additional complexity, consistency should be preferred.

4

References

[1] Jon Hood, ed. SwATips. https://www.SwATips.com/.

[2] Bjarne Stroustrup. “Exception Safety: Concepts and Techniques”. In: (2001). url: https://www.
stroustrup.com/except.pdf.

5

https://www.SwATips.com/
https://www.stroustrup.com/except.pdf
https://www.stroustrup.com/except.pdf

	Sticking with a RAII Standard
	Updating the Code
	Double Frees
	Initialization Errors
	Inconsistency Can Increase Maintenance Costs
	Smart Pointers and Arrays
	Conclusion

