
Software Assurance Tips
A product of the Software Assurance Tips Team[1]

Jon Hood

Monday 10th April, 2023

1



1 Ada Unchecked Conversions

Updated Friday 12th May, 2023

The SwA team lives in a privileged area. If you throw a rock out of yourwindow, chances are that
you’ll hit a C, C++, or C# developer. But it takes a tactical nuke to pinpoint a good Ada developer here.
Because of this, several companies have projects that are built partially in Ada and partially in C++.
Interactions between these components often cause security issues, but the most misunderstood of
them all is the unchecked_conversion.

When evaluating software, we often flag the use of unchecked_conversion for multiple rea-
sons:

• Sending dynamic memory outside of the scope or locality of where it is instantiated is a viola-
tion of RAII programming.

• You must be able to know the exact structure all endpoints that access the memory object are
expecting.

1.1 A Violation of RAII

The first issue has to dowith RAII principles. Whenmemory objects are created in one locality of the
code and used in another, the area of code that created the memory object is no longer in charge of
making sure that object is cleaned up. If it does clean up thememory before exiting, the unmanaged
locality of code may still be trying to use it! This would cause issues with race conditions, accessing
memory that has already been freed, or even accessing new memory objects that are now in that
location of memory (and potentially should not be accessible by the other locality of code, ex: the
Dirty Cow vulnerability for Linux).

Failing to enforce memory cleanup at the unmanaged endpoint would also result in memory
leaks. This could cause crashes and degraded performance over time.

1.2 A Violation of Portability

Code that does not behave the same across platforms violates the concept of portability. This is often
the case when unchecked conversions and pointers are used. When performing an unchecked data
access on memory, the developer must know:

• the endianness of the unmanaged portions of the code

• the compiler options used

• that updates to the unmanaged portion of codewill not violate the contract of how thememory
should be stored

Consider anAda program sending a simple data structure to a C programconsisting of a character
and an integer as defined in Listing 1. The character takes up 1 byte and the integer takes up 4 bytes.
So, in the Ada code, we convert the first byte to the character and the next 4 bytes as the integer
(accessing both with the unchecked_conversion capability. But is that how it really works?

struct A
{

char a ;
int b ;

} tmpA = { ' a ' , 1 } ;

Listing 1: Simple Structure Example

2



Of course not! By default, most compilers (like GCC) pad each data type to the next memory
alignment. The character takes up 1 byte, then 3 bytes of padding are added before the 4 bytes that
define the integer. If youwere to run sizeof(tmpA); in anymodern GCC compiler, the result would
be 8 bytes. Or at least, that’s the default case. If you were to add the __attribute__((packed))
GCC directive to the struct, use #pragma pack, or compile with -fpack-struct, the sizeof(tmpA)
becomes 5 bytes, misaligning the integer value withmemory so that it takes twomemory operations
to read the integer but taking up less memory.

1.3 Fixes

Solutions that do not use uncheckedmemory access are preferred. This often requires the code to
be rearchitected to abide by RAII programming concepts. In lieu of fixing the code, a contract can
be documented that guarantees that all parties involved will abide by a particular memory sharing
structure.

1.4 Conclusion

When performing unchecked conversions, using external memory access, or violating RAII with
two distinct functional objects, a contract should be established. Part of that contract is a guarantee
about the memory structure of what is being shared. That contract should include architecture in-
formation, memory packing, and even the flags and versions of compilers used to build thememory
structures. Creators of this documentation should ask themselves, “What prevents someone from
compiling this code with options like -fpack-struct?” “How are memory structures updated in
newer versions of the software?” and “What is the enforcement mechanism to ensure that the code
is only built in the approved way?”

3



References

[1] Jon Hood, ed. SwATips. https://www.SwATips.com/.

4

https://www.SwATips.com/

	Ada Unchecked Conversions
	A Violation of RAII
	A Violation of Portability
	Fixes
	Conclusion


